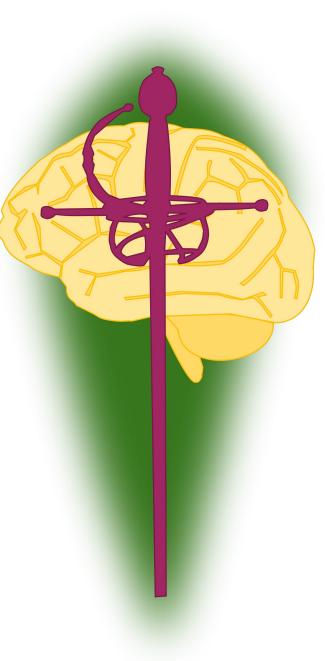
Brockshus Dissertation Review of Literature

Brandon Brockshus

Iowa State University

POSC: Elizabeth Stegemöller Phd, Jacob Meyer PhD, Kori Khan PhD, Kira Werstein PhD, Brad Dell MFA 2013 BA Liberal Arts and Sciences
Performing Arts – Acting/Directing
2017 National Stage Combat Workshop
2021 MS Kinesiology

• Motor Control


Actors and fighters: Predictors of motor health, cognitive health, and well-being in actor-combatants

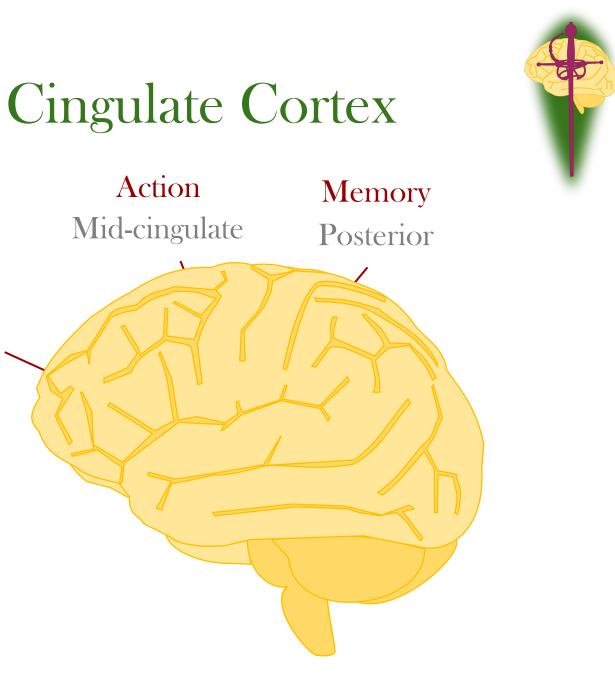
2025? PhD Kinesiology

TA – Kin 372: Motor Control and Learning across the Lifespan RA – SPARX3 Clinical Trial, Exercise Interventionist

Neuromotor Learning of Stage Combat Skills

Stage Combat is an Aesthetic Martial Art

Stage combat: an aesthetic martial art undertaken for the purposes of violent storytelling


2 conflicting goals

- Effectively simulate violence for an audience
- Keep the actors unharmed

8 weapon disciplinesUnarmedKnifeStaffSingle SwordLongswordSword & ShieldRapier & DaggerSmallsword

Compulsory Skill Techniques

Acting

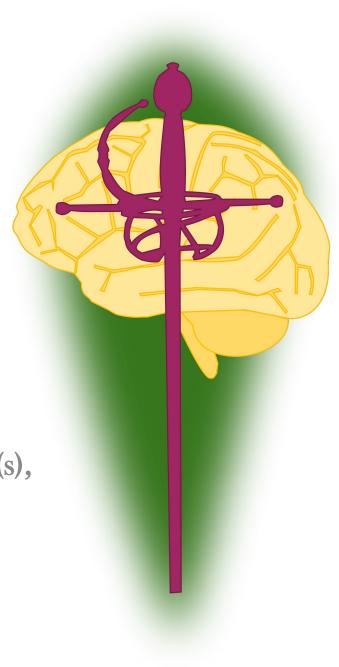
Psychological ActingPhysical ActingPsychophysical Acting

Emotion – Action – Cognition

Emotion

Anterior

How is neuromotor learning of stage combat skills accomplished?


 The body matrix extends to incorporate the prop weapon(s), if used, and the scene partner.
 The brain-body system becomes better at simulating and acting in fictively violent situations.
 Social-emotional intelligence develops to support competence in stage combat skills.

4) Motor synergies and understanding, supported by neural substrates, re-organize to accommodate skilled movement in the collaborative context of stage combat.

The Self for Motor Learning

The body matrix extends to incorporate the prop weapon(s), if used, and the scene partner.

Embodied Cognition (Merleau-Ponty, 1945/2000)

Stages of Development (Piaget, 1970)

Why have a nervous system?

The body is the seat of agency, and movement is the expression of that

Bodily Representation

(Head & Holmes, 1911)

Bodily Self-Consciousness agency.

Flashbulb Paradigm

(Rademaker et al., 2014)

Embodied Cognition (Merleau-Ponty, 1945/2000)

Stages of Development (Piaget, 1970)

Why have a nervous system?

Sensorimotor period Period of representative intelligence Period of formal operations

Bodily Representation (Head & Holmes, 1911)

Bodily Self-Consciousness (Riva, 2018)

Flashbulb Paradigm

(Rademaker et al., 2014)

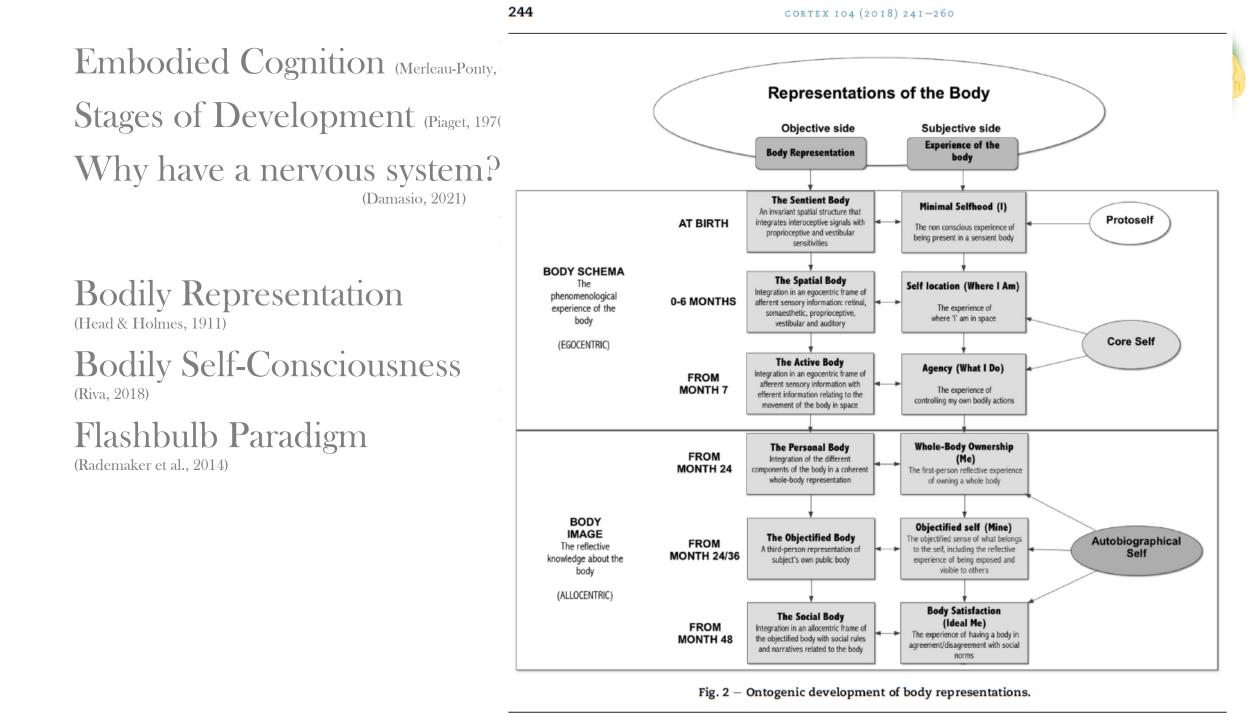
Embodied Cognition (Merleau-Ponty, 1945/2000)

Stages of Development (Piaget, 1970)

Why have a nervous system?

Bodily Representation

(Head & Holmes, 1911)

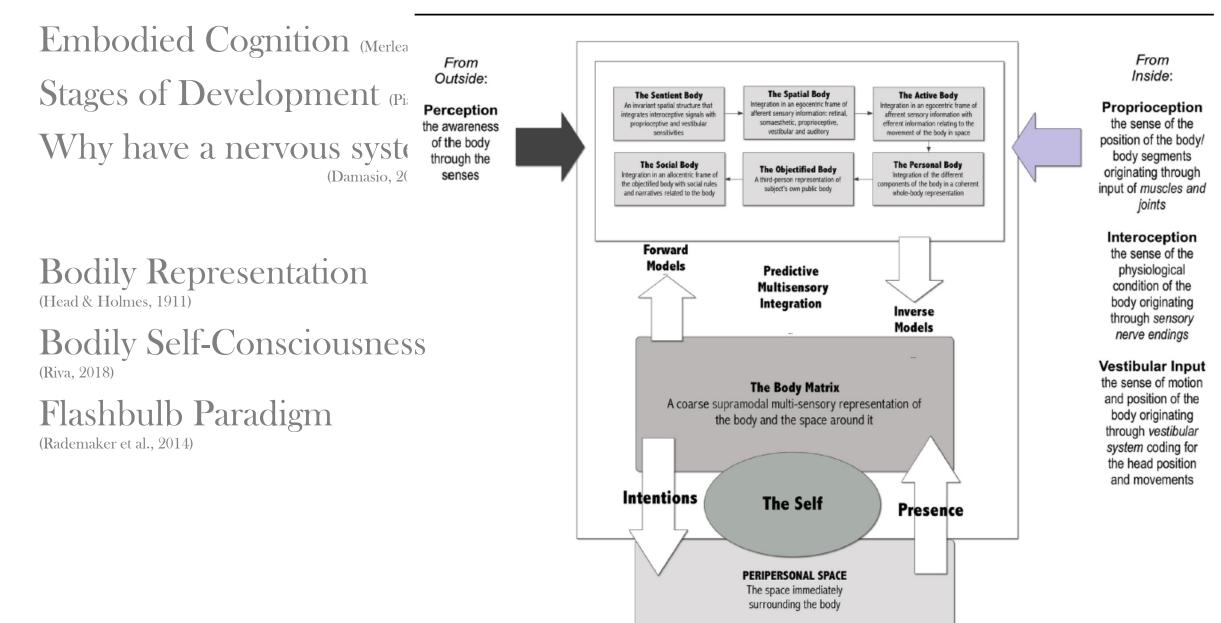

Bodily Self-Consciousness (Riva, 2018)

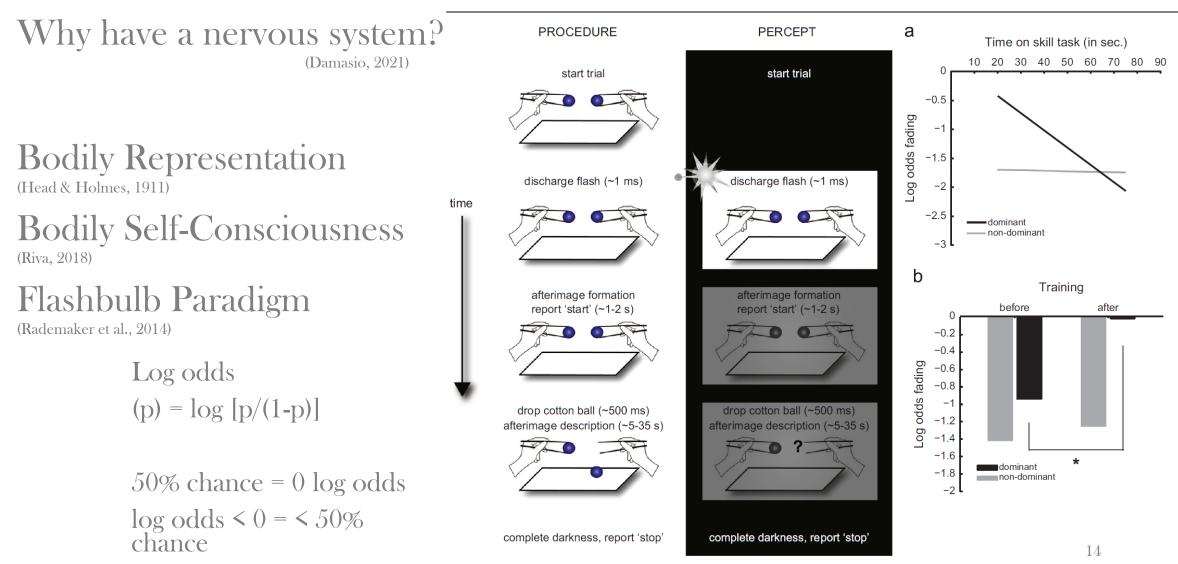
Flashbulb Paradigm

(Rademaker et al., 2014)

The purpose of life Intelligence Feeling & Knowing Core Self and Autobiographical Self

CORTEX 104 (2018) 241-260



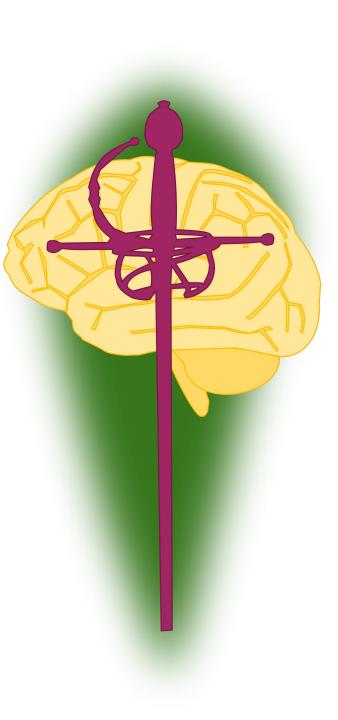

Fig. 3 – The interaction between the self, the body matrix and the different body representations.

250

Embodied Cognition (Merleau-Ponty, Intensive tool-practice and skillfulness facilitate the extension of body representations in humans

Rosanne L. Rademaker^{a,*}, Daw-An Wu^b, Ilona M. Bloem^a, Alexander T. Sack^a

Stages of Development (Piaget, 197(^a Cognitive Neuroscience Department, Maastricht University, Maastricht, The Netherlands Caltech Brain Imaging Center, Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA


How is neuromotor learning of stage combat skills accomplished?

1) The body matrix extends to incorporate the prop weapon(s), if used, and the scene partner.

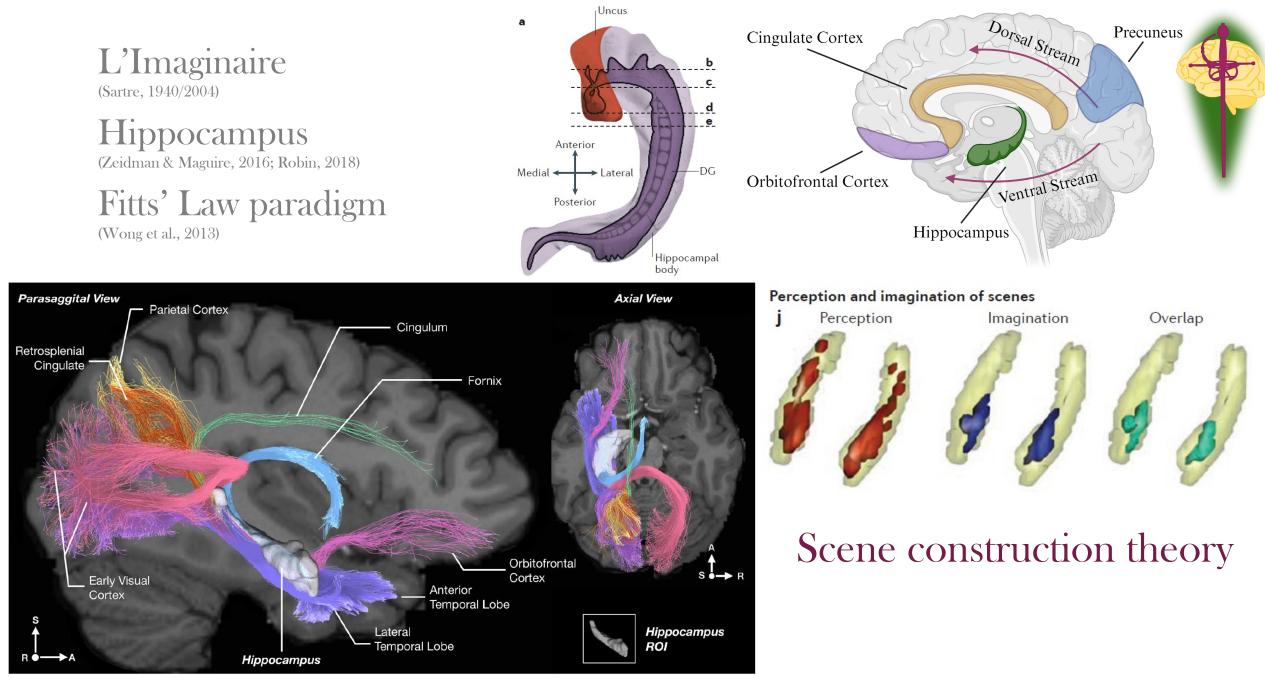
Imagination for Action

The brain-body system becomes better at simulating and acting in fictively violent situations.

L'Imaginaire

(Sartre, 1940/2004)

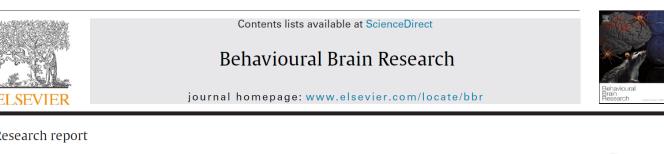
Hippocampus (Zeidman & Maguire, 2016; Robin, 2018)


Fitts' Law paradigm

(Wong et al., 2013)

Consciousness

- Perception
- Conceptualization
- Imagination

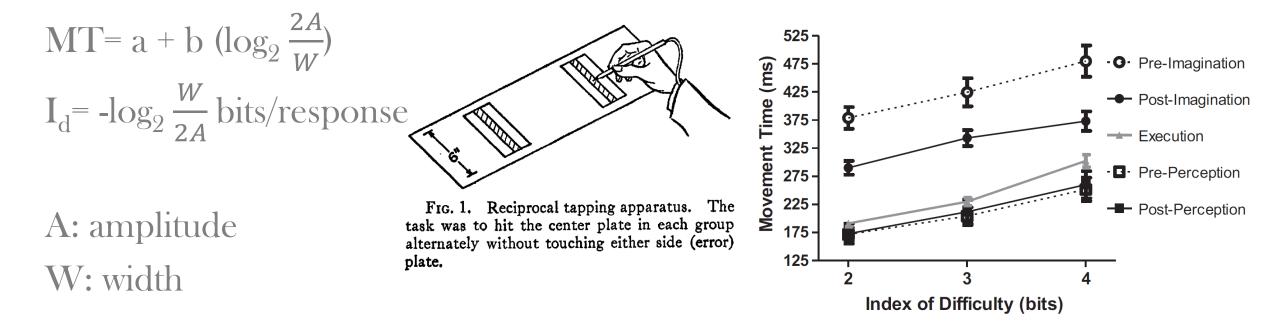


L'Imaginaire (Sartre, 1940/2004)

Hippocampus (Zeidman & Maguire, 2016; Robin, 2018)

Fitts' Law paradigm

(Wong et al., 2013)


CrossMark

Research report

On the relationship between the execution, perception, and imagination of action

Lokman Wong^a, Gerome A. Manson^{a,b}, Luc Tremblay^{a,b}, Timothy N. Welsh^{a,b,*}

^a Faculty of Kinesiology & Physical Education, University of Toronto, 55 Hardbord Street, Toronto, ON, Canada M5S 2W6 ^b Centre for Motor Control, University of Toronto, Toronto, ON, Canada M5S 2W6

How is neuromotor learning of stage combat skills accomplished?

 The body matrix extends to incorporate the prop weapon(s), if used, and the scene partner.
 The brain-body system becomes better at simulating and acting in fictively violent situations.

Emotion for Action

Social-emotional intelligence, self-efficacy, and motivation develop to support competence in stage combat skills.

"The actor is an athlete of the heart." - Antonin Artaud, 1958, p. 133

(James, 1890; Dewey, 1894; Johnson-Laird & Oatley, 1992; Lindquist & Feldman Barrett, 2009; Flavell et al., 2022)

Circumplex Model

(Posner et al., 2005)

(Gotlieb et al., 2016)

Neural Substrates

(Rolls, 2019)

James: feeling of the bodily changes which directly follow the perception of an exciting fact

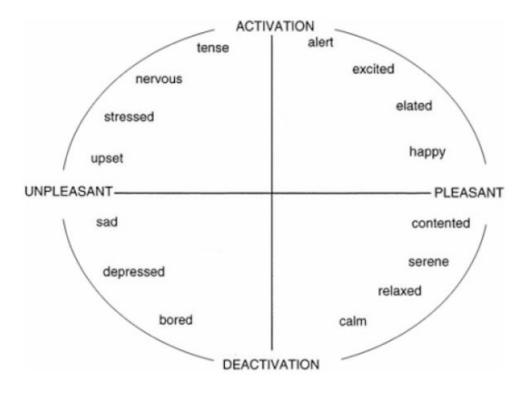
Dewey: a mode of behavior which is purposive, or has an intellectual content, and which also reflects itself into feeling or Affects, as the subjective valuation of that which is Social-emotional imagination objectively expressed in the idea or purpose

Johnson-Laird & Oatley: function to redistribute cognitive resources at junctures in action; mixtures of the basic emotions happiness, sadness, anger, fear, disgust, perhaps desire

Feldman Barrett: the result of conceptualizing a core affective state as an instance of emotion

(James, 1890; Dewey, 1894; Johnson-Laird & Oatley, 1992; Lindquist & Feldman Barrett, 2009; Flavell et al., 2022)

Circumplex Model


(Posner et al., 2005)

Neural Substrates

(Rolls, 2019)

Social-emotional imagination

(Gotlieb et al., 2016)

(James, 1890; Dewey, 1894; Johnson-Laird & Oatley, 1992; Lindquist & Feldman Barrett, 2009; Flavell et al., 2022)

Circumplex Model (Posner et al., 2005)

Neural Substrates

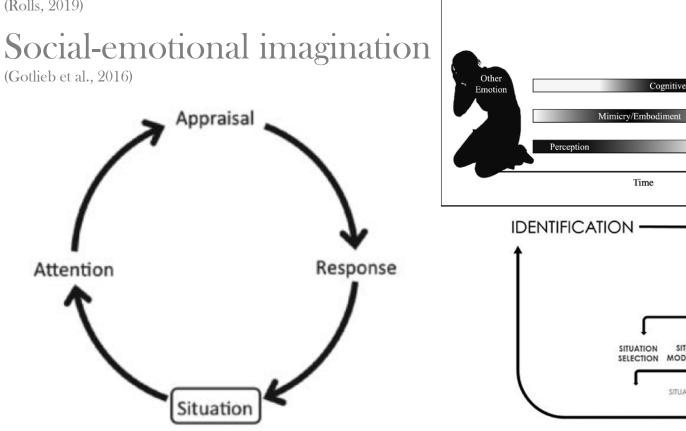
(Rolls, 2019)

Social-emotional imagination (Gotlieb et al., 2016)

ACC: dorsal – high arousal ventral – low

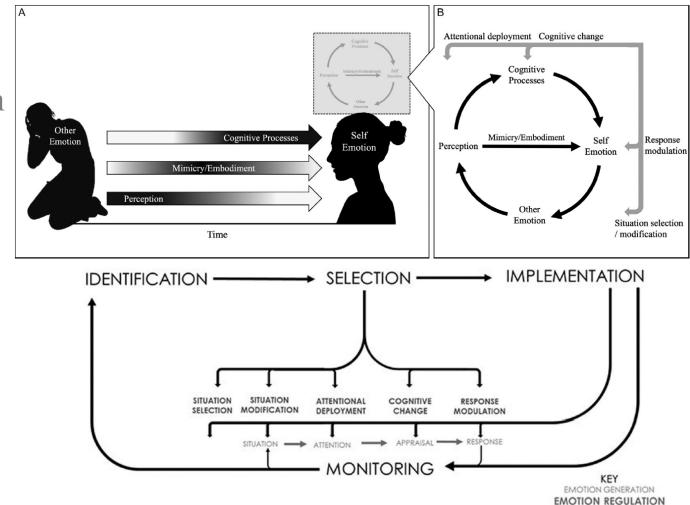
ACTIVATION alert tense excited nervous elated stressed happy upset UNPLEASANT - PLEASANT sad contented serene depressed relaxed bored calm DEACTIVATION Cingulate Cortex **Basal Ganglia Orbitofrontal Cortex** Locus Coeruleus Amygdala

Orbitofrontal: lateral – pleasant valence medial – aversive


Brain figure created with BioRender.com

(James, 1890; Dewey, 1894; Johnson-Laird & Oatley, 1992; Lindquist & Feldman Barrett, 2009; Flavell et al., 2022)

Circumplex Model (Posner et al., 2005)


Neural Substrates

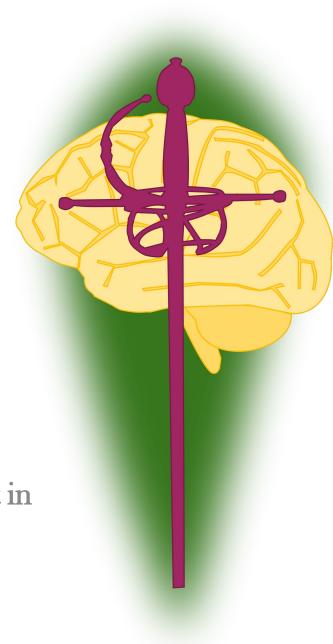
(Rolls, 2019)

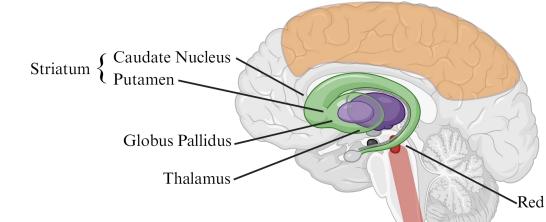
The ability to take another's perspective. Theory of Mind: infer another's intent

Empathy: infer another's emotion

PROCESS MODEL

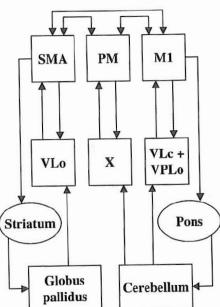
Gross, 2015; Thompson et al., 2019; McRae & Gross, 2020; Goldstein, 2009


How is neuromotor learning of stage combat skills accomplished?


 The body matrix extends to incorporate the prop weapon(s), if used, and the scene partner.
 The brain-body system becomes better at simulating and acting in fictively violent situations.
 Social-emotional intelligence develops to support competence in stage combat skills.

Body and Brain for Motor Learning

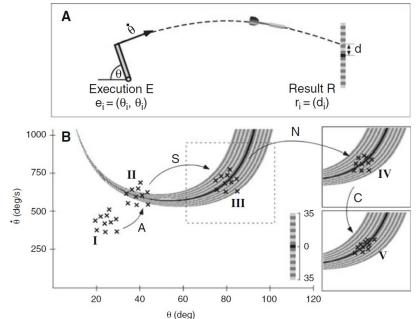
Motor synergies and understanding, supported by neural substrates, re-organize to accommodate skilled movement in the collaborative context of stage combat.



Motor Learning

Sequence Learning: attunement

Adaptation: calibration



Level D: parietal-premotor; action Level C: pyramidal-striatal; spatial field Level B: thalamo-palidar; synergies Level A: rubrospinal; reflexes and tonus

Red Nucleus

Solution Manifold

- Approach Sensitivity
- Noise Reduction Covariation

Bernstein, 1947/2021; Doyon & Ungerleider, 2002; Hacques et al., 2020; Müller & Sternad, 2009; brain figure created with BioRender.com

Levels of Construction

(Bernstein, 1947/2021)

Attunement and Calibration (Hacques et al., 2020)

Solution Manifold

(Müller & Sternad, 2009)

Metalearning

(Doya, 2002)

Referent Control

(Feldman, 2015)

Synergies and Understanding (Latash, 2021)

Neurotransmitters

Dopamine: prediction of rewards and punishments

Serotonin: controls timescale of reward prediction

Norepinephrine: arousal/relaxation and exploration/exploitation

Acetylcholine: memory storage and renewal

Function to set metaparameters of learning

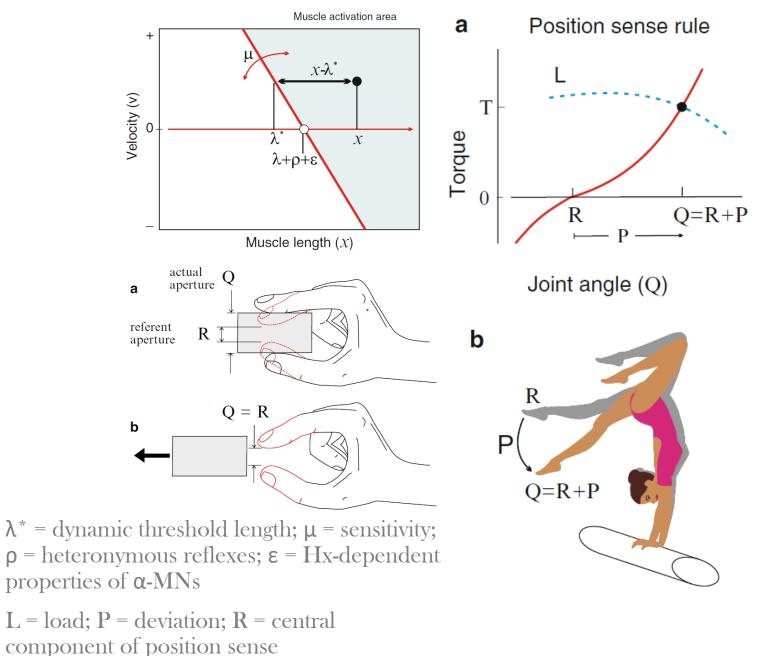
Levels of Construction

(Bernstein, 1947/2021)

Attunement and Calibration

(Hacques et al., 2020)

Solution Manifold


(Müller & Sternad, 2009)

Metalearning (Doya, 2002)

Referent Control

(Feldman, 2015)

Synergies and Understanding (Latash, 2021)

Levels of Construction (Bernstein, 1947/2021)

(Hacques et al., 2020)

Solution Manifold

(Müller & Sternad, 2009)

Metalearning

(Doya, 2002)

Referent Control

(Feldman, 2015)

Synergies and Understanding (Latash, 2021)

Combinations of grouping plus co-variation plus optimization

- Attunement and Calibration Understanding (cognitive neuroscience): the discovery of co-variation between groups of relevant cognitive variables based on optimization, likely related to minimizing energy expenditure inside the system
 - Synergy (movement neuroscience): grouping numerous elements into stable groups to reduce the number of variables manipulated by the brain; co-varying group involvement with the purpose to ensure dynamical stability of actions in the unpredictable environment

How is neuromotor learning of stage combat skills accomplished?

 The body matrix extends to incorporate the prop weapon(s), if used, and the scene partner.
 The brain-body system becomes better at simulating and acting in fictively violent situations.
 Social-emotional intelligence develops to support competence in stage combat skills.

4) Motor synergies and understanding, supported by neural substrates, re-organize to accommodate skilled movement in the collaborative context of stage combat.

PhD Degree Requirements by Category

72 credits minimum beyond Bachelor's degree

Kinesiology Specialization

15 credits minimum

At least 9 credits in primary area

Course	Date	Credit	Grade
KIN 472*	F 20	3	А
KIN 560	F 22	3	A-
KIN 661*	F 22	3	А

At least 6 credits in secondary area

Course	Date	Credit	Grade
H S 564	S 20	3	А
KIN 567	S 21	3	А

Focus Area Outside Department

9 credits minimum

Course	Date	Credit	Grade
PSYCH 316	F 20	3	А
PSYCH 516	F 21	3	А
PSYCH 533	F 21	3	А
PSYCH 519*	S 22	3	А

* denotes neuroscience minor courses # denotes statistics minor courses Statistics / Research Methods

9 credits minimum

Course	Date	Credit	Grade
KIN 501	S 20	3	А
STAT 587#	F 20	4	А
STAT 575#	F 22	3	А
STAT 588#	S 23	4	А
STAT 586#	S 24	3	-

Research Ethics and PhD Seminar Ethics seminar 1 credit minimum PhD seminar 6 credits minimum

Course	Date	Credit	Grade
GrSt 565	S 21	1	S
KIN 615	S 21 thru F 23	6	S x5

Other

Other			
Course	Date	Credit	Grade
KIN 590B	S 20	3	А
HD FS 510	SS 21	3	А
EDUC 680X	SS 22	3	A
NUTRS 505	SS 22	1	S
NEURO 696*	S 22 F 22 S 23	3	S

Dissertation Research

21 credits minimum

9 credits minimum prior to prelims

9 credits minimum after prelims

Course	Date	Credit	Grade
KIN 699	S 21 thru F 23	21	S
KIN 699	F 23 thru end	9	-

<u>Fall 2019</u> Kin 355: Biomechanics

Kin 355: Biomechanics	
Kin 358: Exercise Physiology	
Kin 372: Motor Control and Lifelong Learning	

<u>Spring 2020</u>

Kin 590B: Special Topics in Health Promotion; Critical Appraisal Skills for Evidence-Based Practice in Kinesiology	3
Kin 501: Research Methods in Physical Activity	6
H S 564: Physical Activity Epidemiology	9

<u>Fall 2020</u>

Stat 587: Statistical Methods for Research Workers
Psych 316: Cognitive Psychology
Kin 472: Neural Basis of Human Movement

<u>Spring 2021</u>

Kin 567: Exercise and Health: Behavior Change	22
Gr St 565: Responsible Conduct of Research in Science and Engineering	23
Kin 615: Seminar	24
Kin 699: Research	30

<u>Summer 2021</u>

Ζ

Ζ

Ζ

13

16

19

HD FS 510: Theories of Human Development	33
Kin 699: Research	34
Fall 2021	
Psych 516: Advanced Cognition	37

Psych 533: Theories of Learning	40
Kin 615: Seminar	41
Kin 699: Research	43

MS Degree

Thesis: Actors and fighters: Predictors of motor health, cognitive health, and well-being in actor-combatants

<u>Spring 2022</u>

Psych 519: Cognitive Neuropsychology
Kin 615: Seminar
Neuro 696: Neuroscience Seminar
Kin 699: Research

<u>Summer 2022</u>

Kin 699: Research

	tivation in Educational Contexts	acational Contexts
--	----------------------------------	--------------------

NutrS 505: Short Course in Gut Health, Cancer, and Aging

Fall 2022

Kin 560: Principles of Neuromotor Control and Learning
Kin 661: Advanced Topics in Neuroscience
Stat 575: Introduction to Multivariate Data Analysis
Kin 615: Seminar
Neuro 696: Neuroscience Seminar

<u>Spring 2023</u>

Stat 588: Statistical Theory for Research Workers	72
Kin 615: Seminar	73
Neuro 696: Neuroscience Seminar	74
Kin 699: Research	77
<u>Summer 2023</u>	
Kin 699: Research	78
Fall 2023	
Kin 615: Seminar	79
Kin 699: Research	82
<u>Spring 2024</u>	
Stat 574: Introduction to Statistical Computing	85
Kin 699: Research	91